国家科学数据中心联合专刊 最新来稿(未评审) 版本 ZH1
下载
黄河流域250m分辨率植被生长季时空演变数据集(2000–2020年)
250 m resolution dataset of spatiotemporal variations of vegetation in the growing season over the Yellow River Basin (2000–2020)
: 2021 - 07 - 14
: 2021 - 07 - 14
81 0 0
摘要&关键词
摘要:黄河流域是我国重要的生态屏障区,在经济社会发展和生态安全等方面的作用举足轻重。植被的时空变化格局与趋势是评估区域生态恢复状况以及揭示气候变化和人类活动对生态系统影响的重要指标。本研究基于MODIS植被指数产品(MOD13Q1,C6),通过投影转换、镶嵌裁剪和最大值合成等预处理,采用非参数Theil-Sen趋势估算与Mann-Kendall显著性检验,以及变异系数等方法,生成了2000–2020年黄河流域250 m分辨率植被生长季时空演变数据集,包含植被NDVI和EVI的变化趋势及其波动性特征等信息。通过数据共享,期望为全球变化背景下黄河流域植被生态系统过去、现在、未来演变规律的深入认知提供重要参考。
关键词:黄河流域;植被指数;Mann-Kendall检验;变异系数;生长季
Abstract & Keywords
Abstract: The Yellow River Basin (YRB) is a significant ecological barrier region in China and plays a pivotal role in the economic and social development as well as the ecological security. In view of assessing the status of regional ecological restoration and revealing the impacts of climate change and human activities on ecosystems, the spatiotemporal patterns and trends of vegetation dynamics are imperative indicators. Based on the MODIS vegetation index product (MOD13Q1, C6), we generate a dataset of spatiotemporal variations of vegetation NDVI and EVI in the growing season over the YRB from 2000 to 2020, with a resolution of 250 m. The dataset is obtained using approaches including projection, mosaicking, clipping, maximum value composites, non-parametric Theil–Sen estimator and Mann–Kendall significance test, and coefficient of variation. In addition, the dataset contains information on the time series change trends and volatility characteristics of both NDVI and EVI in the YRB during past 21 years. This datasets is expected to provide an important reference for in-depth understanding the past, present, and future evolution of vegetation ecosystem in the YRB under the background of global change.
Keywords: Yellow River Basin; vegetation index; Mann-Kendall test; coefficient of variation; growing season
稿件与作者信息
白燕
Bai Yan
baiy@lreis.ac.cn
杨雅萍
Yang Yaping
孙九林
Sun Jiulin
出版历史
参考文献列表中查看
中国科学数据
csdata