国家科学数据中心联合专刊 最新来稿(未评审) 版本 ZH1
下载
1992–2018年中国及其毗邻地区土地覆盖与景观多样性数据集
A dataset of land cover and landscape diversity in China and its adjacent areas (1992–2018)
: 2021 - 07 - 07
: 2021 - 07 - 14
65 0 0
摘要&关键词
摘要:土地覆盖是陆地表层的自然状态,表现为地表覆盖的类型、数量以及空间异质性特征(如景观多样性)等,是自然过程和人类活动共同作用的结果。土地覆盖数据是全球变化、物质与能量循环等研究和应用的基础数据。遥感技术为土地覆盖变化监测提供重要支撑,加深了人们对于土地覆盖变化的驱动机制以及景观多样性响应的认识。本文以欧空局气候变化中心生产的土地覆盖数据为基础,利用交叉步行表,经尺度转换将原数据的离散土地覆盖类型转换为具有连续数值的植被功能类型(PFT)比例,并基于PFT计算香农多样性指数,生产得到1992-2018年逐年0.05°的中国及其毗邻地区(70-140°E,15-55°N)土地覆盖与景观多样性数据集。该数据集具有时序长、分辨率高、定量化等优点,可应用于区域的植被覆盖、景观格局动态等方面的研究,也可为模型模拟、遥感反演等研究提供基础底图。
关键词:土地覆盖;植被功能类型;香农多样性指数;遥感技术
Abstract & Keywords
Abstract: Land cover is a natural condition of the land surface, presenting types and quantity of the observed (bio)physical cover, and spatial heterogeneity (e.g., landscape diversity), etc. It is shaped by the combined effect of natural processes and human activities. Land cover data play a crucial role of studies and applications of global change, matter and energy cycles. Remote sensing technology provides an important foundation of land cover change monitoring, and deepens understandings of driving mechanisms of land cover change and responses of landscape diversity. In this paper, the land cover data produced by the ESA Climate Change Initiative were applied to derive the plant functional type (PFT) ratio with continuous values from the discrete land cover type of the original data using a cross walking table after scaling. Then, the Shannon diversity index was calculated based on PFT. Finally, a dataset of land cover and landscape diversity of China and its adjacent areas (70-140°E, 15-55°N) from 1992 to 2018 with a resolution of 0.05° was produced. This dataset has the advantages of long time series, high resolution, and quantification. It can be applied to studies on regional vegetation coverage and landscape pattern dynamics. Besides, it can also provide basic maps for model simulation and remote sensing inversion.
Keywords: land cover; plant functional type; Shannon diversity index; remote sensing
稿件与作者信息
严涛
YAN Tao
金佳鑫
JIN Jiaxin
jiaxinking@hhu.edu.cn
朱青松
ZHU Qingsong
刘颖
LIU Ying
出版历史
参考文献列表中查看
中国科学数据
csdata