MODIS数据预处理:MODIS 13Q1和MODIA 17A2H产品为HDF格式,通过MRT(MODIS Reprojection Tool)软件批处理功能对数据进行拼接处理。本研究获取的MODIS数据产品投影方式为正弦投影(Sinusoidal),为方便数据查看与后期处理,利用MRT软件对数据进行重投影,转换为UTM(Universal Transverse Mercator Projection)投影。
植被指数参数提取:MODIS数据经格式转换处理后得到TIF格式的数据文件,利用ArcGIS中Analysis Tools模块下Clip工具叠加研究区行政边界数据图层,对重投影的栅格数据进行裁剪处理。通过MVC方法得到月合成NDVI和EVI植被指数,以及净光合PSNnet。MSAVI指数则通过RED波段和NIR波段计算得到。根据MODIS产品用户手册中各指数有效值域范围指南,将超出值域范围的无效值赋值为空值。将地面样点数据矢量化,并将经ArcGIS空间插值后形成的降水数据与各遥感指数栅格图层进行叠加,提取对应样点像元值。随机选取80%的样点数据用于建模,20%的样点数据用于精度验证。
遥感指数计算方式如公式(1)–(4)所示:

(1)

(2)

(3)

(4)
式中,

、

、

分别为近红外波段、红光波段、蓝色波段的反射率,
GPP为植物总初级生产力,

为叶自养呼吸消耗

为根自养呼吸消耗。
产草量估算模型建立:基于预处理后的野外实测数据和降水数据分别建立其与NDVI、EVI、MSAVI和PSNnet 4种遥感指数之间的线性、指数和多元拟合关系,得到12种回归模型。通过决定系数、平均相对误差(REE)、平均绝对误差(RMSE)等指标对模型进行精度评价,见公式(5)–(6)。最终确定基于MSAVI的指数模型为最优模型,利用最优模型对研究区产草量进行估算。

(5)

(6)
式中,
REE和
RMSE分别表示平均相对误差和平均绝对误差;
N为样点数;
Yi 、

和

分别表示实测产草量、估算产草量和平均实测产草量,单位为g/m
2。