中巴经济走廊专题 I 区论文(评审中) 版本 ZH2
下载
2013–2017年中巴经济走廊重点区域冰川冰湖分布数据集
A dataset of glacier and glacial lake distribution in key areas of the China-Pakistan Economic Corridor during 2013–2017
 >>
: 2018 - 09 - 11
: 2018 - 09 - 30
: 2018 - 09 - 30
657 4 0
摘要&关键词
摘要:中巴经济走廊范围内复杂的地貌地质、独特的水文气候条件以及丰富的高山积雪和冰川分布,为冰川灾害的发育提供了充分的物质条件。但由于地缘因素,在研究区进行野外调查、采集具体研究对象实测数据存在困难。通过遥感技术进行调查研究是获取该地区冰川冰湖变化和发展数据的重要手段。本文根据冰湖的定义并结合中巴经济走廊的建设范围,以冰湖编目及冰川灾害的相关研究为诉求,确定适用于本研究区的冰川与冰湖的界定与分类标准,以2013–2017年的Landsat 8 OLI遥感影像为数据源,通过面向对象的分类方法,完成中巴经济走廊重点区域冰川及冰湖分类及分布数据集。研究区空间范围为34°–42°N,73°–82°E,包含了克勒青河、洪扎河、盖孜河及努布拉河等重点流域。相比传统方法,面向对象的分类方法在保证解译时效性的基础上提高了解译精度。长期、定时的冰川及冰湖监测可为中巴经济走廊的进一步建设提供数据支持,也对区域水资源变化、冰湖溃决危险性评估的科学决策支持具有重要意义。
关键词:中巴经济走廊;冰川;冰湖;面向对象
Abstract & Keywords
Abstract: The China–Pakistan Economic Corridor is characterized by complex landform and geology, unique hydrological and climate conditions, rich mountain snow and glacier of altogether, which altogether provide sufficient material conditions for ice disaster development. However, due to geographical factors, field investigation and on-site data collection are difficult to conduct. Remote sensing technology thus provides an important means to obtain data on the change and development of glacier and glacial lake in this region. We determined a classification standard to delimit glacier and glacial lake in the study area, based on the concept of glacial lake and the requirements of glacial lake cataloging and glacial calamity studies. The dataset of glacier and glacial lake distribution in key areas of the China-Pakistan Economic Corridor is built with an object-oriented approach based on the Landsat 8 OLI images for 2013–2017. The data have a spatial scope between 34° to 42° latitude and 73° to 82° longitude approximately, covering Gaizi River Basin, Nubra Basin, Shaksgam River Basin, and Hunza River Basin in northern Pakistan. The object-oriented classification method can be used to improve the interpretation speed and accuracy compared with traditional methods. Long-term and regular monitoring of glacier and glacial lake in the areas can provide data support for further construction of the China–Pakistan Economic Corridor, as well as for scientific decision-making concerning regional water resource change and the risk assessment of glacial lake outburst.
Keywords: China–Pakistan Economic Corridor; glacier; glacial lake; object-oriented
数据库(集)基本信息简介
数据库(集)名称2013–2017年中巴经济走廊重点区域冰川冰湖分布数据集
数据作者任彦润、张耀南、康建芳
数据通信作者张耀南 (yaonan@lzb.ac.cn)
数据时间范围2013年1月1日至2017年12月31日
地理区域34°–42°N,73°–82°E
空间分辨率30 m
数据量259 MB
数据格式SHP
数据服务系统网址http://www.crensed.ac.cn/portal/metadata/4dbe5611-6203-454d-956c-7b716de0f68d
基金项目国家科技基础条件平台“特殊环境特殊功能观测研究台站共享服务平台”(Y719H71006);中国科学院信息化专项“寒旱区环境演变研究‘科技领域云’的建设与应用”(XXH13506)
数据集组成本数据集由5个子数据集组成,包括中巴经济走廊重点区域2013年到2017年各年份的冰川冰湖分布数据集。
Dataset Profile
TitleA dataset of glacier and glacial lake distribution in key areas of the China–Pakistan Economic Corridor during 2013–2017
Data corresponding authorZhang Yaonan (yaonan@lzb.ac.cn)
Data authorRen Yanrun, Zhang Yaonan , Kang Jianfang
Time rangeFrom January 1, 2013 to December 31, 2017
Geographical scope34°–42°N, 73°–82°E
Spatial resolution30m
Data volume259 MB
Data formatSHP
Data service systemhttp://www.crensed.ac.cn/portal/metadata/4dbe5611-6203-454d-956c-7b716de0f68d
Sources of fundingSpecial environment and function of observation and research stations shared service platform of the National Science and Technology Infrastructure (Y719H71006); Informatization Program of the Chinese Academy of Sciences: Construction and application of technology cloud on studies of environmental evolution in the cold region (XXH13506)
Dataset compositionThe dataset consists of 5 subsets in total. It comprises datasets of glacier and glacial lake distribution in key areas of the China–Pakistan Economic Corridor during 2013–2017.
引 言
在全球气候变暖的背景下,近几十年我国冰川面积总体呈现加速退缩的趋势,对比两次冰川编目数据可知,近30年来我国冰川面积约减少17%[1],区域水文过程和冰湖变化受冰川环境影响较大。中巴经济走廊范围内地势险峻,地质构造复杂,水文特征多变,固态降水丰沛,现代冰川发育充分,冰川变化十分活跃,冰川阻塞湖分布广泛,冰川的进退与消融极易引发各类冰川灾害,冰湖溃决引发的洪水灾害是研究区典型的灾害类型之一。
冰湖是由冰川作用形成的湖泊或以冰川融水为主要补给源的湖泊[2],冰湖的发育和变化过程与气候环境的变化、冰川物质平衡、冰川的温度状态及水力特征等有着密切的关系。现代冰川是本区内高山冰雪融水、冰崩雪崩融水和冰湖溃决融水的主要水源,其中天气变化导致的冰湖上游来水、冰坝自身软化变形及地质灾害引发的冰滑坡、冰崩、滑坡、泥石流进入湖泊,都有可能造成堤坝溃决形成冰湖溃决洪水。冰湖溃决引发的洪水及其次生灾害是高山冰川区常见的灾害之一,冰川阻塞湖和冰碛阻塞湖是最常发生溃决的两类冰湖。
中巴公路大多路段均位于河谷之中,两岸高山及沟谷之中冰川、多年积雪密布,冰川活动是中巴经济走廊地质灾害的主要激发因素之一。针对冰川活动引起冰湖灾害及其可能对中巴经济走廊形成的危害,本文利用来源于美国地质勘探局数据中心的Landsat 8 OLI遥感影像,基于地理信息系统平台的支持,采用面向对象的分类方法,对中巴经济走廊范围,包括洪扎河流域、努布拉流域、盖孜河流域、克勒青河流域4个典型流域进行冰川及冰湖分布的分类和提取。鉴于冰川与冰湖存在共生关系,有时两者的空间位置还会发生重叠,再加上冰湖与山体阴影具有相近的光谱特征,精确提取冰川和冰湖的边界存在一定困难。高山冰湖的提取由于自身理化特征的复杂性及周边背景的影响,其提取工作大多数采用传统野外监测结合人工解译的方式实现,需要进行大量、长时间的分析和处理。本文基于面向对象的分类方法,以多尺度分割算法对高分辨率影像进行分割,以雪盖指数法、归一化水体指数法对典型地物进行分类和提取,剔除干扰因素,实现了遥感影像中冰川、冰湖信息的自动提取。对研究区内冰川和冰湖的空间分布及变化特征进行长期、定时的监测可为中巴经济走廊的进一步建设提供数据支持,对区域水资源变化、冰湖溃决危险性评估的科学决策也具有重要意义。
1   数据采集和处理方法
1.1   数据来源与预处理
Landsat 8是Landsat系列于2013年2月发射的最新卫星,携带了TIRS(Thermal Infrared Sensor,热红外传感器)和OLI(Operational Land Imager,陆地成像仪)两个传感器,在原有基础上新增了一些波段,并对部分波段进行了调整。Landsat 8遥感影像有像幅面积大(成像宽幅185 km×185 km)、获取周期短(16天)及波段信息丰富(9个波段)的特点,可以通过不同波段组合形式进行影像分析。Landsat 8 OLI影像全色波段最大空间分辨率为15 m,其他波段空间分辨率为30 m。通过对多光谱影像不同波段的组合可以凸显用户感兴趣的地物类型,根据冰雪和水体对不同波段的反射率特征,可选择6、5、2波段的RGB组合进行判读和目视解译。数据集用到的Landsat影像见表1。
在遥感影像的解译过程中,由于“同物异谱”“同谱异物”现象,高山冰川和冰湖的提取会受到云雪和山体阴影的影响。为排除云、雾、雪、山体阴影等对遥感影像的解译精度造成影响,选取的是年内7–10月中云量较少的遥感影像。USGS(United States Geological Survey,美国地质勘探局)网站提供的所有Landsat 影像均已经过系统辐射校正、地面控制点几何校正及基于DEM的地形校正,因此在本次数据预处理阶段中没有再进行影像校正工作。
表1   数据集用到的Landsat影像列表
流域名称经纬度范围影像编号信息(Path:条带号;Row:行编号)
洪扎河流域35°–37°10′N,73°–76°EP:149;R:34;
P:149;R:35;
P:149;R:36;
P:150;R:34;
P:150;R:35;
P:150;R:36;
努布拉流域34°32′–35°40′N,76°45′–77°48′EP:147;R:35;
P:147;R:36;
P:148;R:35;
P:148;R:36;
盖孜河流域38°10′– 39°10′N,73°42′–77°08′EP:149;R:33;
P:150;R:33;
克勒青河流域35°31′–36°49′N,75°35′–77°30′EP:148;R:35;
其他P:148;R:33;
P:148;R:34;
P:151;R:35;
P:151;R:36;
1.2   研究区介绍
本次冰川冰湖分布数据集的制备主要基于Landsat 8 OLI遥感影像,共选取从2013–2017年共85幅影像,基本覆盖了中巴经济走廊周边绝大部分冰川分布区,具体位置如图1所示。根据流域规模、水文变化特征、冰川空间分布等特点选取喀喇昆仑山区洪扎河流域、努布拉流域、盖孜河流域和克勒青河流域为重点关注对象。
洪扎河流域位于喀喇昆仑山脉和兴都库什山脉交界处,地势险峻,冰川密布,其中80%为山岳冰川[3],流域及其周边分布有帕苏–慕士塔格山活动性冰川群,包括古尔米特冰川、固尔金冰川、帕苏冰川、巴托拉冰川等多条北西–南东走向的冰川,由冰川变化导致的冰湖溃决及冰川泥石流等危害较大。据统计在洪扎河谷分布有110个面积动态变化的冰湖[4],在对洪扎河流域冰川的观测中还发现相邻冰川在相同时期进退不同步的情况[5],可见对其进行定期动态的监测有助于对冰川进退规律的认识和冰川灾害的防治。
努布拉流域属于印度河流域,位于喀喇昆仑山中部,平均海拔高,面积大约5×103平方千米,受西风环流的影响降水丰沛,冰川覆盖率接近50%,河流主要由冰川融水补给,流域内分布有被称为“克什米尔地理中枢”的锡亚琴冰川,周边分布有狮泉河、塔什库尔干等气象观测站。
盖孜河流域地处新疆西南部,帕米尔高原东缘,受西风环流影响,冰川规模与地貌发育充分。盖孜河由慕士塔格、公格尔等高山的冰雪融水形成,是喀什噶尔河水系的源流之一,设有喀拉库里水文站、克勒克水文站、维塔克水文站及喀什、塔什库尔干等气象观测站。流域内分布有克拉牙依拉克、其木干等多条冰川,其中克拉牙依拉克冰川是公格尔山北坡最大的现代冰川,2015年曾被观测到冰川跃动事件。


图1   研究区范围地理位置示意图
克勒青河流域位于塔里木河河源区,坐落在喀喇昆仑山分水岭北侧,处于西风环流控制区[6],冰川分布高度密集,克勒青河由冰川融水形成,是叶尔羌河的重要支流之一,流域内分布有我国境内最长冰川音苏盖提冰川、特拉木坎力冰川等多条大型冰川,曾多次被记录和观测到冰川跃动现象[7-8],是我国冰坝湖溃决洪水的主要研究区域,周边分布有塔什库尔干、吐尔尕特和乌恰三个气象观测站。
1.3   数据处理步骤
1.3.1   数据处理方法
为了快速、准确地提取目标类别地物,选择使用面向对象分类方法对影像进行处理。按照分类过程基本单元的不同,遥感影像的分类分为基于像元的分类方法和面向对象的分类方法。基于像元的分类方法主要以光谱特征为分类依据,难以避免由于“同物异谱”和“异物同谱”带来的错分,分类精度不高。面向对象的分类方法以对象为影像分类的基本单位,充分利用了影像的光谱信息,通过形状、纹理、空间结构等特征及上下文信息进行类别划分[9,10,11 ],分类效果较好。
遥感影像的处理基于影像光谱信息,由于影像间生成时间不同导致的光照强度差异、卫星系统偏差等问题,同一地物的光谱在不同影像中可能存在差异。为避免此种情况,选择在各幅影像完成所有数据处理和分类工作后再行拼接。
数据处理流程如图2,具体步骤如下:
(1)研究区的选定:根据中巴经济走廊的覆盖范围及冰川分布的空间位置确定研究区范围,获取相应Landsat影响的条带号和行编号。
(2)数据的选取和下载:研究数据下载于美国地质勘探局网站,选取夏季少云的影像,减少干扰因素。
(3)遥感影像的预处理:由于选取的Landsat 8 OLI遥感影像产品级别为L1,故省略大气校正和几何精校正的步骤,直接对影像的全色波段和多光谱影像进行融合。
(4)影像融合:融合多光谱和全色波段,在保持多光谱特性的基础上提升空间分辨率,达到提高地物提取精度的目的。
(5)分类标准的确定:选取需要提取的地物类型并对其类别特征值进行统计和分析,确定具体的地物分类标准、调试阈值范围。
(6)面向对象分类方法:结合分类标准确定最优的分割参数组合,在此基础上进行面向对象的分类,实现对遥感影像的自动解译。
(7)结果导出和验证:根据冰湖的定义,以本次冰川的分类结果做缓冲区分析,去除不符合冰湖空间分布规律的水体;导出分类结果;通过验证样本对分类结果进行评价。


图2   数据处理流程
1.3.2   冰川和水体的提取方法
提取雪冰覆盖地表的常用方法有比值阈值法、雪盖指数法(Normalized Difference Snow/Ice Index,简称NDSI)等,比值阈值法基于雪冰对短红外波段的强吸收及对可见光波段的强反射特性进行地物区分,雪盖指数法将雪冰地表对可见光波段和近红外波段反射率做归一化处理提取目标地物对象。本文选取归一化雪盖指数法进行雪冰地表和非雪冰地表的区分,选取Landsat 8 OLI影像的可见光绿色波段和短红外波段参与计算,计算公式为(1):
\(NDSI=\frac{{Band}_{Green}-{Band}_{SWIR1}}{{Band}_{Green}+{Band}_{SWIR1}}\) (1)
式中,NDSI为雪盖指数,\({Band}_{Green}\)为Landsat 8 OLI影像的可见光绿色波段,\({Band}_{SWIR1}\)为Landsat 8 OLI影像的短红外波段。
提取水体的常用方法有单波段阈值法、多波段阈值法(水体指数法、谱间关系法)等,单波段阈值法比较简单易行但精度有限,本文中选取以水体与其他地物在各波段光谱值之间的差异为分类依据的水体指数法,通过归一化水体指数(Normalized Difference Water Index,简称NDWI)提取雪冰地表中的水体,由于水体在近红外波段的反射率几乎为零,选用Landsat 8 OLI影像的可见光绿波段和近红外波段参与计算,计算公式为(2):
\(NDWI=\frac{{Band}_{Green}-{Band}_{NIR}}{{Band}_{Green}+{Band}_{NIR}}\) (2)
式中,NDWI为水体指数,\({Band}_{Green}\)为Landsat 8 OLI影像的可见光绿色波段,\({Band}_{NIR}\)为Landsat 8 OLI影像的近红外波段。
对比雪盖指数法和归一化水体指数法计算所得灰度图的统计特征,确定了最佳的阈值提取范围。NDSI大于0.05则为雪冰覆盖区,在雪冰地表中NDWI大于0.15划分为水体。
1.3.3   分割与分类
面向对象的分类主要流程包括影像分割和分类两部分。影像分割是面向对象分类的第一步,通过比较试验效果,选定多尺度分割为影像分割方法,作为面向对象分类中较为常用的分割方法,多尺度分割综合考虑影像的光谱、形状、纹理信息进行自下而上的区域合并,以保证对象间异质性最小和对象内同质性最大为前提,合并异质性小于设定阈值的相邻像元或“小对象”[12,13,14 ],分割形成的多边形不仅包含了被合并像元原有的光谱信息,还形成了形状、纹理及空间位置等信息。
面向对象的分类过程技术路线如图3,具体步骤如下:
(1)多尺度分割及参数选取:对融合后的影像进行分割。结合经验和分割实验结果建立合适的分割规则,调整影像的分割尺寸并选定分割参数。分割尺度和分割参数的选择会直接影响分类的精度,根据Landsat影像的分辨率和本次分类的精度要求,确定分割尺度(Scale)为200;在参照前人经验的基础上,多次尝试后确定分割参数:紧凑度(Compactness)为0.5、形状参数(Shape)为0.2,得到了较好的分类结果。
(2)对象特征提取:通过对Landsat 8第3、5、6波段进行雪盖指数、归一化水体指数的运算获取影像NDSI和NDWI特征集。
(3)计算机自动分类:根据确定的分类规则按顺序进行分类和提取,雪冰地表的分类规则为NDSI>0.05,冰川为NDSI>0.05且NDWI≤0.15,冰湖为NDSI>0.05且NDWI>0.15。
(4)合并、去除小图斑:将相邻同类别对象合并为一个整体;将面积较小的图斑与邻近的同一类别的进行合并,如果没有同一类别则与其他地物类别的对象合并。
(5)分类后的评价:验证和评价分类结果。


图3   面向对象的分类过程技术路线
2   数据样本描述
研究范围内包含冰川、积雪、水体等多种高寒山区典型地表类型,以冰川和冰湖为目标地物类别进行提取,本数据集中的地物类型和范围采用GCS_WGS_1984投影坐标,文件中包括FID、形状类型(Shape)、面积(Area_Pxl)、类别(Class_name)等信息。2016年中巴经济走廊重点区域冰川冰湖分布如图4。
面向对象分类方法在本次数据制备过程中适用性较好。由于面向对象分类过程中考虑了纹理等信息,所以对形状规整的地物分类效果尤佳,在水体地物的提取中表现较好,它在对冰川的提取中可有效抑制云雪干扰,提取精度较高。分类结果的完整性和均质性有了提升[15-16]。文中所用方法总体分类效果较好,但是也存在雪盖指数法中将部分山体阴影、河道或水体错分为雪冰地表的情况,归一化水体指数法也并不能完全将水体与雪冰地表区分开,部分水体被错分为冰川。


图4   2016年中巴经济走廊重点区域冰川冰湖分布图
3   数据质量控制和评估
非监督分类可以在缺少先验地物样本、没有人为干涉的条件下自动进行识别和分类,是遥感影像自动提取处理的主流方法。监督分类通过选取具有代表性和确定性的地表点为训练样本,依据样本的特征参数建立判别函数并以此对像元进行类别判断,后续还可以通过检验和评估控制样本来提高分类精度,是地物分类中公认精度较高的方法。为了评价面向对象方法在分类过程中的适应性和精确程度,以监督分类中最大似然法的分类结果结合目前公认分类精度最高的目视解译分类结果形成标准数据,通过计算混淆矩阵(表2)、生产精度、用户精度、总体精度和Kappa系数等进行精度评价,结果如表3。从表中可发现面向对象的分类方法对冰川、水体的分类精度较高,满足用户对Landsat遥感影像自动解译的需求,总体分类精度0.9072165,Kappa系数0.8088042,在Landsat 8遥感影像的地物分类过程中适用性较好。
表2   面向对象分类的混淆矩阵
User\Reference冰湖冰川其他地物总和
冰湖110112
冰川162669
其他地物011516
总和126322
表3   单一类别精度及总体精度分析
生产者
精度
用户精度Heddlen
精度
Short
精度
各类别Kappa系数总体
分类精度
Kappa
系数
冰湖0.91666670.91666670.91666670.84615380.9050.90721650.8088042
冰川0.98412700.89855070.93939390.88571430.945
其他
地物
0.68181820.93750.78947370.65217390.619
4   数据价值
本文研究范围内冰川灾害分布较广,而且类型众多、危害性较大,对当地冰川和冰湖进行空间位置和分布情况的定时监测对冰川灾害的研究和预防具有重要意义。Landsat影像的地面分辨率已经难以满足现在对地表精细化研究的不断发展需求,但作为地表类型数据制备中的参考数据依旧具有不可替代的地位。本文通过影像的选择、多尺度分割、地物提取函数的确定等自动解译了冰川、水体等地物类别。相比传统方法,面向对象的分类方法在保证解译时效性的基础上提高了解译精度。制备的数据集针对中巴经济走廊冰川分布范围进行了基于面向对象分类方法的特定类型的地物提取,利用优化后的分割参数及分类标准,得出了总体分类精度0.9072165,Kappa系数为0.8088042的分类结果。
面向对象的分类方法中,分割参数的选取对分类结果的影响较大,不同类型遥感影像、目标地物所对应的最优参数组合是不同的,由于缺乏对分割效果统一的评价指标,通过人工目视判定分割效果给分类带来了一定的主观影响,接下来应着重关注分割效果评价指标的建立,提升面向对象分类方法的应用范围。
验证分类精度的最好办法是将实地考察点作为样点,但本次验证样本的地物类别来源于基于目视解译的监督分类结果,难免存在一定偏颇。
5   数据使用方法和建议
本数据集基于Landsat 8 OLI影像获取了2013–2017年中巴经济走廊典型区域冰川和冰湖的分布数据,在面向对象方法的基础上进行地物分类,为冰川变化监测及当地水文变化研究提供了基础数据,是当地冰川灾害研究重要的参考数据。数据集保存为矢量SHP格式,ArcGIS、QGIS、ENVI、ERDAS等常用的GIS与遥感软件均支持该数据的读取和操作。
致 谢
感谢美国地质勘探局数据中心USGS提供的Landsat数据,感谢寒区旱区科学数据中心提供的中国帕米尔高原第二次冰川编目数据和巴基斯坦冰川编目数据。
[1]
QIU J. Measuring the meltdown[M]. Nature Publishing Group, 2010.
[2]
秦大河. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014.
[3]
CAMPBELL J G, PRADESH H. Inventory of glaciers, glacial lakes and the identification of potential glacial lake outburst floods (GLOFs) affected by global warming in the mountains of India, Pakistan and China/Tibet Autonomous Region[J]. International Centre for Integrated Mountain Development, GP O Box, 2005, 3226
[4]
朱颖彦, 杨志全, 叶成银. 中巴喀喇昆仑公路冰川灾害[J]. 公路交通科技, 2014, 31(11): 51-9.
[5]
COCKERILL G, CONWAY M, YOUNGHUSBAND F, et al. Explorations in the Karakoram: Discussion[J]. The Geographical Journal, 1926, 68(6): 468-73.
[6]
冯童. 喀喇昆仑山乔戈里峰南北坡冰川变化对比研究[D]. 北京: 中国科学院大学, 2015.
[7]
上官冬辉, 刘时银, 丁永建, 等. 喀喇昆仑山克勒青河谷近年来发现有跃动冰川[J]. 冰川冻土, 2005, 27(5): 641-4.
[8]
许艾文, 杨太保, 王聪强, et al. 1978-2015年喀喇昆仑山克勒青河流域冰川变化的遥感监测[J]. 地理科学进展, 2016, 35(7): 878-88.
[9]
SU W, LI J, CHEN Y, et al. Textural and local spatial statistics for the object‐oriented classification of urban areas using high resolution imagery[J]. International journal of remote sensing, 2008, 29(11): 3105-17.
[10]
YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(7): 799-811.
[11]
LOBO A, CHIC O, CASTERAD A. Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation[J]. International Journal of Remote Sensing, 1996, 17(12): 2385-400.
[12]
朱俊杰, 杜小平, 范湘涛, 等. 三种图像分割算法的对比及图像分割方法的改进[J]. 计算机应用与软件, 2014, 31(1): 194-6.
[13]
吕志勇, 张新利, 高利鹏, 等. 基于高分辨率遥感影像数据的FNEA分割算法研究与应用分析[J]. 测绘与空间地理信息, 2012, 35(10): 13-6.
[14]
谭衢霖, 刘正军, 沈伟. 一种面向对象的遥感影像多尺度分割方法[J]. 北京交通大学学报, 2007, 31(4): 111-4.
[15]
LALIBERTE A S, RANGO A, HAVSTAD K M, et al. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico[J]. Remote Sensing of Environment, 2004, 93(1-2): 198-210.
[16]
SCHIEWE J, TUFTE L, EHLERS M. Potential and problems of multi-scale segmentation methods in remote sensing[J]. GeoBIT/GIS, 2001, 6(01): 34-9.
数据引用格式
任彦润, 张耀南, 康建芳. 2013–2017年中巴经济走廊重点区域冰川冰湖分布数据集[DB/OL].国家特殊环境、特殊功能观测研究台站共享平台, 2018. (2018-09-25). DOI: 10.12072/casnw.056.2018.db.
稿件与作者信息
论文引用格式
任彦润, 张耀南, 康建芳. 2013–2017年中巴经济走廊重点区域冰川冰湖分布数据集[J/OL]. 中国科学数据, 2018. (2018-09-30). DOI: 10.11922/csdata.2018.0057.zh.
任彦润
Ren Yanrun
主要承担工作:算法设计和实现,数据处理,数据精度验证。
(1988—),女,甘肃省武威市人,博士研究生,研究方向为寒旱区水文。
张耀南
Zhang Yaonan
主要承担工作:数据处理流程设计。
yaonan@lzb.ac.cn
(1966—),男,甘肃省天水市人,博士,研究员,研究方向为地学大数据。
康建芳
Kang Jianfang
主要承担工作:数据管理与分析。
(1981—),女,甘肃省秦安县人,硕士,工程师,研究方向为寒旱区大数据应用。
出版历史
I区发布时间:2018年9月30日 ( 版本ZH2
参考文献列表中查看
中国科学数据
csdata