Chinese FLUX Observation and Research Network (ChinaFLUX) Thematic Observation Datasets Zone II Versions ZH3 Vol 6 (1) 2021
Download
An observation dataset of carbon, water and heat fluxes in an alpine wetland in Haibei (2004–2009)
Dataset URL >>
: 2020 - 05 - 06
: 2021 - 03 - 19
: 2020 - 06 - 30
: 2021 - 03 - 29
1815 22 0
Abstract & Keywords
Abstract: The Qinghai-Tibet Plateau known as the “Chinese Water Tower”, has alpine wetlands as an important carrier for the Plateau water conservation. The budgets of carbon and water and the underlying environmental mechanism control are essential for evaluating the ecological functions of carbon sequestration and water conservation in alpine wetlands. Based on the popular eddy covariance technique, Haibei National Field Research Station for Alpine Grassland Ecosystem (i.e. Haibei Station) has been implementing the scientific observation of the carbon, water, and heat fluxes of an alpine Carex pamirensis wetland ecosystem since 2004. In order to promote the development of alpine ecology and maximize the value of data, we intended to publicly publish the carbon, water, and heat fluxes and related routine meteorological dataset of the alpine wetland. The flux and meteorological data durations range from 2004 to 2009 and from 2004 to 2010, respectively. The dataset includes net ecosystem CO2 exchange, ecosystem CO2 respiration, total ecosystem CO2 exchange, latent heat flux, sensible heat flux, air temperature, air relative humidity, water vapor pressure, wind speed, wind direction, soil temperature, total radiation, net radiation, photosynthetically active radiation and precipitation on half-hour, daily, monthly and yearly scales, respectively. This dataset is expected to provide data support and theoretical foundation for regional ecological function assessment and ecological civilization construction.
Keywords: carbon, water, and heat fluxes; Carex pamirensis; alpine wetland; eddy covariance technique; Qinghai-Tibet Plateau
Dataset Profile
TitleAn observation dataset of carbon, water and heat fluxes in an alpine wetland in Haibei (2004–2009)
Data corresponding authorLI Yingnian (ynli@nwipb.cas.cn)
Data producersObserver: ZHANG Fawei, LI Hongqin, ZHAO Liang, ZHANG Leiming, CHEN Zhi, ZHU Jingbin, XU Shixiao, YANG Yongsheng, ZHAO Xinquan, YU Guirui, LI Yingnian, Director: LI Yingnian
Time rangeFlux data: 2004–2009; Meteorological data: 2004–2010.
Geographical scopeHaibei National Field Research Station for alpine grassland ecosystem, Menyuan county, Qinghai Province, China
Ecosystem typeAlpine Carex pamirensis wetland
Data amount34 MB
Data format*.xlsx
Data service system<http://www.cnern.org.cn/data/initDRsearch?cid=SYC_A02>
<http://www.sciencedb.cn/dataSet/handle/1010>
Sources of fundingNational Key R&D Program (2017YFA0604801); National Natural Science Foundation of China (41877547, 32001149); Qinghai R&D Infrastructure and Facility Development Program (2018-ZJ-T09); Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19020302).
Dataset compositionThe dataset includes carbon, water and heat fluxes data subset (net ecosystem CO2 exchange, ecosystem CO2 respiration, gross ecosystem CO2 exchange, latent heat flux, and sensible heat flux) and routine meteorological data subset (air temperature, air relative humidity, water vapor, wind velocity, wind direction, soil temperature, total radiation, net radiation, photosynthetically active radiation, and precipitation), in which the half-hour flux data are interpolated. The dataset contains 4 scales: half-hour scale, daily scale, monthly scale and yearly scale.
Article and author information
Zhang Fawei
主要承担工作:数据监测和论文撰写。
Li Hongqin
主要承担工作:数据分析与论文修改。
Zhao Liang
主要承担工作:数据整理与质量控制。
Zhang Leiming
主要承担工作:数据处理和质量控制。
Chen Zhi
主要承担工作:数据质量分析。
Zhu Jingbin
主要承担工作:数据整理和论文修改。
Xu Shixiao
主要承担工作:数据整理。
Yang Yongsheng
主要承担工作:数据整理。
Zhao Xinquan
主要承担工作:数据管理和统筹。
Yu Guirui
主要承担工作:数据管理和统筹。
Li Yingnian
主要承担工作:数据分析和质量控制。
ynli@nwipb.cas.cn
Publication records
Released: June 30, 2020 ( VersionsZH2
Published: March 29, 2021 ( VersionsZH3
References
中国科学数据
csdata