Ready-To-Use (RTU) Remote Sensing Products Zone II Versions ZH3 Vol 5 (4) 2020
Download
Landsat spectral index products over China
Dataset URL >>
: 2020 - 04 - 30
: 2020 - 12 - 04
: 2020 - 06 - 01
: 2020 - 12 - 29
6494 87 0
Abstract & Keywords
Abstract: Remote sensing spectral indices have been widely used because of its simple calculation and good indication, which can effectively measure and monitor the corresponding features of the earth surface. Based on Landsat land surface reflectance products, eight remote sensing spectral index products have been developed: NDVI, EVI, SAVI, MSAVI, NDWI, NDMI, MNDWI, and NBR, covering the land areas of China from the 1980s to the year of 2019. The results of these spectral index products are saved in GeoTIFF format with corresponding quality assessment files (QA), and XML metadata files.
Keywords: NDVI; EVI; SAVI; MSAVI; NDWI; NDMI; NBR; MNDWI; Landsat 5/7/8
Dataset Profile
TitleLandsat spectral indices products over China
Data corresponding authorHe Guojin (hegj@radi.ac.cn)
Data authorsPeng Yan, He Guojin, Zhang Zhaoming, Yin Ranyu
Time range1980s–2019年
Geographical scopeChina
Spatial resolution30 m
Data volume38 TB
Data format*.tiff (GeoTIFF, 16bit interger)
Data service system<http://databank.casearth.cn>
<http://www.sciencedb.cn/dataSet/handle/986>
Sources of fundingStrategic Priority Research Program of the Chinese Academy of Sciences (XDA19090300); National Natural Science Foundation of China (61731022).
Database compositionThe dataset consists of NDVI, EVI, SAVI, MSAVI, NDMI, MNDWI, NBR remote sensing indices with a total of 557857 scenes, which are stored in folders based on imageries. Each folder includes the corresponding index result, a QA file, thumbnails and XML metadata file.
Article and author information
Peng Yan
主要承担工作:算法集成程序编写,数据生产流程设计,论文撰写。
He Guojin
主要承担工作:总体思路与方案设计,论文修改。
hegj@radi.ac.n
Zhang Zhaoming
主要承担工作:技术指导,论文修改。
Yin Ranyu
主要承担工作:数据挑选与整合。
Publication records
Released: June 1, 2020 ( VersionsZH2
Published: Dec. 29, 2020 ( VersionsZH3
References
中国科学数据
csdata