Ready-To-Use (RTU) Remote Sensing Products Zone II Versions ZH3 Vol 5 (4) 2020
Download
Generation of 30-meter resolution burned area products over the globe based on Landsat 8 images
Dataset URL >>
: 2020 - 04 - 14
: 2020 - 12 - 25
: 2020 - 04 - 30
: 2020 - 12 - 30
3115 23 0
Abstract & Keywords
Abstract: Burned area (BA) is an important research parameter in the field of global change and carbon cycle. On the basis of high-precision global sample database, we input Landsat 8 time series satellite data and several sensitive spectral parameters of burned areas to the machine learning algorithm, produced and released the 30-meter resolution global burned area products. The 30-meter resolution global BA products can effectively detect small burned patches, and excel in location spotting and area measurement of the burned patches, which can be applied to global fire monitoring and disaster assessment, carbon emission calculation, ecological environment protection and other fields.
Keywords: Landsat 8; burned area; global; machine learning algorithm
Dataset Profile
TitleGeneration of 30-meter resolution burned area products over the globe based on Landsat 8 images
Data corresponding authorHe Guojin (hegj@aircas.ac.cn)
Data authorsZhang Zhaoming, Tang Chao, He Guojin, Long Tengfei, Wei Mingyue
Time rangeFrom January, 2015 to December, 2015
Geographical scope60°S–80°N,180°W–180°E
Spatial resolution30 m
Data volume5.39 GB
Data format*.TIF
Data service system<ftp://bigrs-info.com/GABAM/burned area/2015/>
<http://www.sciencedb.cn/dataSet/handle/976>
Source of fundingNational Natural Science Foundation of China (61731022); National Key Research and Development Program of China (2016YFA0600302); Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19090300).
Dataset compositionThe data set consists of 10*10 degree files, 504 files in total. The file format is TIF.
Article and author information
Zhang Zhaoming
主要承担工作:研究思路与研究方案设计、算法研究、论文撰写。
Tang Chao
主要承担工作:产品生产、精度验证。
He Guojin
主要承担工作:总体指导,研究思路与研究方案设计。
hegj@radi.ac.cn
Long Tengfei
主要承担工作:算法研究、程序编写。
Wei Mingyue
主要承担工作:数据处理、精度验证。
Publication records
Released: April 30, 2020 ( VersionsZH2
Published: Dec. 30, 2020 ( VersionsZH3
References
中国科学数据
csdata